In previous work, colleagues from Cambridge and I have shown how stolen bitcoins can be traced if we simply apply existing law. If bitcoins are “mixed”, that is to say if multiple actors pool together their coins in one transaction to obfuscate which coins belong to whom, then the precedent in Clayton’s Case says that FIFO ordering must be used to track which fragments of coin are tainted. If the first input satoshi (atomic unit of Bitcoin) was stolen then the first output satoshi should be marked stolen, and so on.
This led us to design Taintchain, a system for tracing stolen coins through the Bitcoin network. However, we quickly discovered a problem: while it was now possible to trace coins, it was harder to spot patterns. A decent way of visualizing the data is important to make sense of the patterns of splits and joins that are used to obfuscate bitcoin transactions. We therefore designed a visualization tool that interactively expands the taint graph based on user input. We first came up with a way to represent transactions and their associated taints in a temporal graph. After realizing the sheer number of hops that some satoshis go through and the high outdegree of some transactions, we came up with a way to do graph generation on-the-fly while assuming some restrictions on maximum hop length and outdegree.
Using this tool, we were able to spot many of the common tricks used by bitcoin launderers. A summary of our findings can be found in the short paper here.